Pasar al contenido principal

Publications

Books

Books Edited

  1. M. Chatzakou, J.E. Restrepo , M. Ruzhansky, B. Torebek, K. Van Bockstal. Modern Problems in PDEs and Applications - Extended Abstracts of the 2023 GAP Center Summer School. Research Perspectives Ghent Analysis and PDE Center. Birkhäuser, 2024.
    https://link.springer.com/book/9783031567315
  2. D. Cardona, J.E. Restrepo, M. Ruzhansky. Extended Abstracts 2021/2022, Methusalem Lectures. Research Perspectives Ghent Analysis and PDE Center. Birkhäuser, 2024.
    https://link.springer.com/book/9783031485787

Preprints

6. A. Jerbashian, J.E. Restrepo. On projection from $A^p_\omega$ to the Hardy spaces $H^p$. https://doi.org/10.48550/arXiv.2502.21237, (2025).

5. J.E. Restrepo. Anomaly of the fractional heat propagator in abstract settings.
https://doi.org/10.48550/arXiv.2501.16569, (2025).

4. S. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Evolutionary integro-differential equations of scalar type on locally
compact groups. https://doi.org/10.48550/arXiv.2409.18141, (2024).

3. J.E. Restrepo. Direct and inverse abstract Cauchy problems with fractional powers of almost sectorial operators.
https://doi.org/10.48550/arXiv.2408.00240, (2024).

2. S. Gómez Cobos, J.E. Restrepo, M. Ruzhansky. Heat-wave-Schrödinger type equations on locally compact groups. https://doi.org/10.48550/arXiv.2302.00721, (2023).

1. M Chatzakou, J.E. Restrepo, M Ruzhansky. Heat and wave type equations with non-local operators, II. Hilbert spaces and graded Lie groups. https://doi.org/10.48550/arXiv.2301.12256, (2023).

Publications

43. J.E. Restrepo, M. Ruzhansky, B.T. Torebek. Integro-differential diffusion equations on graded Lie groups. Asymptotic Anal., (2024). https://doi.org/10.3233/asy-241940

42. S. G\'omez Cobos, J.E. Restrepo, M. Ruzhansky. $L^p-L^q$ estimates for non-local heat and wave type equations on locally compact groups. C. R. Acad. Sci. Paris 362, (2024), 1331-1336. https://doi.org/10.5802/crmath.643

41. W.A.A. de Moraes, J.E. Restrepo, M. Ruzhansky. Heat and wave type equations with non-local operators, I. Compact Lie groups. Int. Math. Res. Not. IMRN. 2, (2024), 1299-1328. https://doi.org/10.1093/imrn/rnad017

40. A.M. Jerbashian, S.G. Rafayelyan, J.E. Restrepo. Some aspects of the contribution of Mkhitar Djrbashian to fractional calculus. Fract. Calc. Appl. Anal. 27, 971–986 (2024). https://doi.org/10.1007/s13540-024-00267-3

39. V. Kumar, J.E. Restrepo, M. Ruzhansky. Asymptotic Estimates for the Growth of Deformed Hankel Transform by Modulus of Continuity. Results Math. 79, 22 (2024). https://doi.org/10.1007/s00025-023-02051-w

38. V. Kumar, J.E. Restrepo. Titchmarsh Theorem by Modulus of Continuity for the Deformed Hankel–Lipschitz Classes. In: Ruzhansky, M., Torebek, B. (eds) Extended Abstracts MWCAPDE 2023. MWCAPDE 2023. Trends in Mathematics, vol 1. Birkhäuser, Cham, 2024. https://doi.org/10.1007/978-3-031-41665-1_9

37. A. Fernandez, J. E. Restrepo, J.-D. Djida. On the fractional Laplacian of a function with respect to another function. Math. Meth. Appl. Sci. 47, (2024), 14079-14110. https://doi.org/10.1002/mma.10256.

36. J.E. Restrepo, M. Ruzhasky, D. Suragan. Generalized fractional Dirac type operators. Fract. Calc. Appl. Anal. 26, 2720--2756 (2023). https://doi.org/10.1007/s13540-023-00209-5

35. A. Fernandez, J.E. Restrepo, D. Suragan. A new representation for the solutions of fractional differential equations with variable coefficients. Mediterr. J. Math., 20(27), (2023). https://doi.org/10.1007/s00009-022-02228-7

34. A. Fernandez, J.E. Restrepo, D. Suragan. On linear fractional differential equations with variable coefficients. Appl. Math. Comput., 432, #127370, (2022). https://doi.org/10.1016/j.amc.2022.127370

33. A. Fernandez, J.E. Restrepo, D. Suragan. Prabhakar-type linear differential equations with variable coefficients. Differ. Integral Equ., 35(9/10), (2022), 581-610. https://doi.org/10.57262/die035-0910-581

32. K. Jabbarkhanov, J.E. Restrepo, D. Suragan. A reaction-diffusion equation on stratified groups. J. Math. Sci., 266, (2022), 593—602. http://dx.doi.org/10.1007/s10958-022-05965-y

31. J.E. Restrepo, D. Suragan. New characterizations of harmonic Hardy spaces. Chapter in: Ruzhansky, M., Wirth, J. (eds) Harmonic Analysis and Partial Differential Equations. Trends in Mathematics. Birkhäuser, Cham, (2022). https://doi.org/10.1007/978-3-031-24311-0_10

30. J.E. Restrepo, H. Rafeiro. Revisiting Taibleson’s theorem. Electron. Res. Arch., 30(2), (2022), 565-573. http://dx.doi.org/10.3934/era.2022029

29. T. Ozawa, J.E. Restrepo, D. Suragan. Inverse abstract Cauchy problems. Appl. Anal., 101(14), (2022), 4965--4969. https://doi.org/10.1080/00036811.2021.1877679

28. A. Karapetyants, J.E. Restrepo. Composition operators on holomorphic variable exponent spaces. Math. Method. Appl. Sci., 45(14), (2022), 8566—8577. http://dx.doi.org/10.1002/mma.7307

27. A. Abilassan, J.E. Restrepo, D. Suragan. On a variant of multivariate Mittag-Leffler's function arising in the Laplace transform method. Integr. Transf. Spec. F., 34(3), (2022), 244—260. http://dx.doi.org/10.1080/10652469.2022.2111420

26. A. Fernandez, J.E. Restrepo, D. Suragan. Linear differential equations with variable coefficients and Mittag-Leffler kernels. Alex. Eng. J., 61(6), (2021), 4757--4763. https://doi.org/10.1016/j.aej.2021.10.028

25. A. Fernandez, J.E. Restrepo, D. Suragan. Lipschitz and Fourier type conditions with moduli of continuity in rank 1 symmetric spaces. Monatsh. Math., 197, (2022), 353—364. http://dx.doi.org/10.1007/s00605-021-01621-w

24. O. Blasco, A. Karapetyants, J.E. Restrepo. Boundedness of composition operators in holomorphic Hölder type spaces. Math. Method. Appl. Sci., 44(17), (2021), 13670--13683. http://dx.doi.org/10.1002/mma.7650

23. J.E. Restrepo, D. Suragan. Hilfer-type fractional differential equations with variable coefficients. Chaos Solit., 150, #111146, (2021). https://doi.org/10.1016/j.chaos.2021.111146

22. J.E. Restrepo, D. Suragan. Direct and inverse Cauchy problems for generalized space-time fractional differential equations. Adv. Differential Equations, 26(7--8), (2021), 305--339. http://dx.doi.org/10.57262/ade026-0708-305

21. R. Daher, A. Fernandez, J.E. Restrepo. Characterising extended Lipschitz type conditions with moduli of continuity. Results Math. 76, #125, (2021). http://dx.doi.org/10.1007/s00025-021-01433-2

20. J.E. Restrepo, M. Ruzhansky, D. Suragan. Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions. Appl. Math. Comput., 403, #126177, (2021). https://doi.org/10.1016/j.amc.2021.126177

19. J.E. Restrepo, D. Suragan. Oscillatory solutions of fractional integro-differential equations II. Math. Method. Appl. Sci., 44(8), (2021), 7262--7274. http://dx.doi.org/10.1002/mma.7258

18. J.E. Restrepo, D. Suragan. Hardy type inequalities in generalized grand Lebesgue spaces. Adv. Oper. Theory, 6(2), #30, (2021). http://dx.doi.org/10.1007/s43036-020-00127-w

17. D. Baleanu, J.E. Restrepo, D. Suragan. A class of time-fractional Dirac type operators. Chaos Solit., 143, #110590, (2021). https://doi.org/10.1016/j.chaos.2020.110590

16. J.E. Restrepo, R.A. Higuita, S. Jain. Hyers-Ulam-Rassias stabilities of some classes of fractional differential equations. Chapter in: Special functions and analysis of differential equations, edited by P. Agarwal, R.P. Agarwal and Michael Ruzhansky. CRC Press- Taylor & Francis Group, 2020.

15. O. Blasco, A. Karapetyants, J.E. Restrepo. Holomorphic Hölder type spaces and composition operators. Math. Method. Appl. Sci., 43(17), (2020), 10005--10026. http://dx.doi.org/10.1002/mma.6675

14. J.E. Restrepo, D. Suragan. Oscillatory solutions of fractional integro-differential equations. Math. Method. Appl. Sci., 43(15), (2020), 9080--9089. http://dx.doi.org/10.1002/mma.6602

13. A. Akkurt, J.E. Restrepo, H. Yildirim. Representations and properties of a new family of omega-Caputo fractional derivatives. Turk. J. Math., 44(3), (2020), 662--675. http://dx.doi.org/10.3906/mat-1906-94

12. P. Agarwal, J.E. Restrepo. An extension by means of $\omega$-weighted classes of the generalized Riemann-Liouville k-fractional integral inequalities. J. Math. Inequal., 14(1), (2020), 35--46. http://dx.doi.org/10.7153/jmi-2020-14-03

11. A. Karapetyants, J.E. Restrepo. Generalized Hölder Type Spaces of Harmonic functions in the unit ball and half space. Czech. Math. J., 70, (2020), 675--691. http://dx.doi.org/10.21136/cmj.2019.0431-18

10. A. Karapetyants, J.E. Restrepo. Boundedness of projection operator in generalized holomorphic and harmonic spaces of Hölder type functions. Chapter in: Modern methods in operator theory and harmonic analysis. Springer Proceedings in Mathematics & Statistics, 2019. https://doi.org/10.1007/978-3-030-26748-3_4

9. J.E. Restrepo, A. Piedrahita, P. Agarwal. Multidimensional Fourier Transform and Fractional Derivative. Proc. Jangjeon Math. Soc., 22(2), (2019), 269--279. http://dx.doi.org/10.17777/pjms2019.22.2.269

8. P. Agarwal, A.M. Jerbashian, J.E. Restrepo. Weighted integral inequalities in terms of omega-fractional integro-differentiation. Chapter in: Advances in mathematical inequalities and applications. Birkhäuser series: Trends in Mathematics, 2018. https://doi.org/10.1007/978-981-13-3013-1_10

7. J.E. Restrepo. On some subclasses of delta-subharmonic functions of bounded type in the disc. J. Contemp. Math. Anal., 53(6), (2018), 346--354. http://dx.doi.org/10.3103/S1068362318060055

6. A.M. Jerbashian, J.E. Restrepo. A boundary property of some subclasses of functions of bounded type in the half-plane. Fract. Calc. Appl. Anal., 20(6), (2017), 1531--1544. http://dx.doi.org/10.1515/fca-2017-0080

5. J.E. Restrepo, A.M. Jerbashian, P. Agarwal. On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel. J. Nonlinear Sci. Appl., 10(5), (2017), 2340--2349. http://dx.doi.org/10.22436/jnsa.010.05.06

4. J.E. Restrepo, A. Kilicman, P. Agarwal, O. Altun. Weighted hypergeometric functions and fractional derivative. Adv. Differ. Equ., 2017, #105, (2017), 1--11. http://dx.doi.org/10.1186/s13662-017-1165-7

3. A.M. Jerbashian, J.E. Restrepo. On some classes of harmonic functions with nonnegative harmonic majorants in the half-plane. J. Contemp. Math. Anal., 51(2), (2016), 79--89. http://dx.doi.org/10.3103/S1068362316020047

2. A.M. Jerbashian, J.E. Restrepo. On some subclasses of delta-subharmonic functions with nonnegative harmonic majorants in the half-plane. J. Contemp. Math. Anal., 51(3), (2016), 134--147. http://dx.doi.org/10.3103/S1068362316030043

1. A.M. Jerbashian, J.E. Restrepo. Riesz type minimal representations in the half-plane. Adv. Appl. Math. Sci., 17(12), (2012), 1--37.